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Abstract Visco-elastic fluid flow and heat transfer in a porous medium over a non-isothermal
stretching sheet have been investigated. The flow is influenced by linearly stretching the sheet in
the presence of suction, blowing and impermeability of the wall. Thermal conductivity is
considered to vary linearly with temperature. The intricate non-linear problem has been solved
numerically by shooting technique with fourth order Runge-Kutta algorithm after using
perturbation method. The zeroth order solutions are obtained analytically in the form of
Kummer's function. An analysis has been carried out for two different cases, namely prescribed
surface temperature (PST) and prescribed heat flux (PHF) to get the effect of porosity and visco-
elasticity at various physical situations. The important finding is that the effect of visco-elasticity
and porosity is to increase the wall temperature in case of blowing and to decrease in both the
cases of suction and when the stretching sheet is impermeable.

Introduction
The study of two-dimensional boundary layer flow over a stretching sheet has
generated much interest over the years because of its numerous industrial
applications such as aerodynamic extrusion of polymer sheets, continuous
stretching, rolling and manufacturing plastic films and artificial fibres.
Boundary layer flow occurs on moving continuous surfaces such as those of
long thread between a feed roll and a wind up roll. Sakiadis (1961a; 1961b) is
the first among others to discuss such flow behaviours theoretically and that is
followed by the work of Crane (1970) and the experimental verification work of
Tsou et al. (1961). There are several extensions of this problem which include
consideration of more general stretching velocity (Kumaran and Ramanaiah,
1996), applications to different non-Newtonian fluids and the study of heat
transfer (Dutta et al., 1985; Jeng et al., 1986). The situation where suction and
blowing exist at the moving surface is discussed by Gupta and Gupta (1977)
and Chen and Char (1988). Siddappa and Abel (1985) have presented their work
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considering continuous surface subjected to suction. Heat transfer analysis in
stagnation-point fluid flow over a flat sheet stretched with linear velocity is
carried out by Chaim (1996). In this study, the thermal conductivity is assumed
to vary linearly with temperature. Solution of the equation of
magnetohydrodynamic visco-elastic boundary layer flow was obtained by
Lawrence and Rao (1995).

The above investigations are restricted to flow behaviour and heat transfer
in non-porous media. However, some metallurgical processes involve cooling
of continuous strips or filaments by drawing them through a quiscent liquid.
The rate of cooling can be controlled and final product of required
characteristics may be achieved if strips are drawn through porous media. In
view of this, the study of visco-elastic flow through porous media has gained
attention in recent years by several researchers. An analysis has been carried
out by Gupta and Sridhar (1985) for visco-elastic effects in non-Newtonian
flow through porous medium. It has been shown that under certain
circumstances the fluid undergoing an external deformation may not exhibit
any shear thickening. Abel and Veena (1998) have carried out the study of
visco-elastic fluid flow and heat transfer characteristics in a saturated porous
medium over an impermeable stretching surface. This work takes into
account the effect of frictional heating and internal heat generation/
absorption in the flow.

Our present work envisages to study the visco-elastic Walters' liquid B fluid
flow past a stretching sheet in a porous medium. In contrast to the work of Abel
and Veena (1998) and Prasad et al. (2000) the variable thermal conductivity is
assumed here, as this is true in some polymer solutions in the class of Walters'
liquid B, and that leads to non-linearity in the boundary value problem of heat
transfer. Recently, flow of non-Newtonian polymer solutions was investigated
by Savvas et al. (1994) and it is shown that computer simulation is a powerful
and accurate technique to predict flow behaviour of such solutions. Therefore,
in this problem, we consider two more general cases of non-isothermal
boundary conditions:

(1) surface with prescribed power law temperature distribution;

(2) surface with prescribed heat flux, varying quadratically with the
distance.

In addition to this, we contemplate to study the problem having linearly
stretched continuous sheet with suction/blowing. Impermeable stretching
sheet, where the transverse velocity is zero at the surface, is also considered.
Because of the complexity and non-linearity in the proposed problem, it has
been solved numerically by shooting technique with fourth order Runge-Kutta
method (Chaim, 1998) following perturbation technique. The zeroth order
solutions are obtained in the form of Kummer's function. Result analysis
reveals that the effect of visco-elasticity is to increase the wall temperature
gradient in case of blowing and to decrease in case of suction. The porosity has
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also significant impact on the wall temperature gradient. Velocity profile and
shear stress contour have also been drawn for various situations of porosity
and visco-elasticity.

Mathematical formulation
Momentum transfer
We consider two-dimensional incompressible visco-elastic laminar flow of
Walters' liquid B through a porous medium. Flow is influenced by suction/
blowing due to a porous sheet as a boundary wall issuing from a thin slit at x =
0, y = 0. The sheet is then stretched in such a way that the speed at any point on
the sheet becomes proportional to the distance from the origin (Figure 1). The
basic boundary layer equations (Abel and Veena, 1998) for the two-dimensional
steady flow are:

@u

@x
� @v

@y
� 0 �1�

u
@u

@x
� v

@u

@y
� v

@2u

@y
ÿ k0

(
u
@3u

@x@y2
� v

@3u

@y3
� @u

@x

@2u

@y2
ÿ @u

@y

@2u

@x@y

)
ÿ v

k0
u:

�2�
where u and v are the flow velocities in x and y-directions respectively, v the
kinematic viscosity, k0 the visco-elastic parameter and k

0
is the porous

medium's permeability parameter.

Figure 1.
A schematic diagram of
the physical model
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The basic boundary conditions are,

u � bx v � vw at y � 0;
u! 0; uy ! 0 as y!1 �3�

We introduce the following similarity transformations

u=bx f � (�) ; v � ÿ
�����
bv
p

f ��� and � �
���
b

v

r
y : �4�

With this the continuity equation (1) is identically satisfied and the momentum
equation (2) reduces to the following non-linear ordinary differential equation

f�
2 ÿ f f�� � f��� ÿ k1 2 f� f��� ÿ f f���� ÿ f��

2
� 	 ÿ k2 f� �5�

where kl = kob
v

, the visco-elastic parameter, and k2 = v
k
0
b

is the porosity
parameter.

The boundary conditions take the form

f(0) � ÿ vw�����
bv
p f��0� � 1 ; f��1� � 0 and f���1� � 0 �6�

The exact solution of (5) with boundary conditions (6) is obtained as

f ��� � 1ÿ eÿ��

�
ÿ vw�����

bv
p ; �7�

where � is the positive root of the cubic equation

�3 � 1ÿ k1

vw
k1����
bv
p

�2 � 1

k1
�ÿ 1� k2

vw
k1����
bv
p
� 0 ; �8�

and it is solved by Graffe's square root method.
It should be noted that vw<0 corresponds to suction, vw>0 corresponds to

blowing and vw= 0 is the case when the stretching sheet is impermeable.

Skin friction
The shear stress at a point on the sheet is

�0 � ÿ�
ÿ @u

@y

�
at y�0

; �9�

The non-dimensional form of shear stress is � � �0

b2x2�

Heat transfer
The heat transfer in the above flow is governed by two-dimensional energy
equation
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where � is the density, cp is the specific heat at constant pressure and k is the
thermal conductivity, which is assumed to be variable here. Keeping in view
that thermal conductivity k varies approximately linearly with temperature in
some of the polymer solutions, we consider thermal conductivity of this
problem in the form:

k � k1�1� "�� ; � � T ÿ T1
Tw ÿ T1

: �11�

where T1 is the constant temperature of the fluid far away from the sheet and
Tw is the wall (sheet) temperature. " is a small parameter which depends on the
nature of the fluid and k1 is the conductivity of the fluid far away from the
sheet .

The thermal boundary conditions depend on the type of heating processes
through the wall surfaces under consideration. Here we consider two general
cases of non-isothermal conditions:

(1) surface with prescribed power law surface temperature (PST);

(2) surface with prescribed power law heat flux (PHF).

PST case
The prescribed power law surface temperature is assumed to be a quadratic
function of x and it is given by

T � Tw � T1 �A�x=l�2; at y � 0 and T � T1 as y!1 ; �12�

where Tw is the variable wall temperature, A is constant and l is the
characteristic length (Chen and Char, 1988). We non-dimensionalise the energy
equation (10) with dimensionless temperature variables given by (11).

Considering equations (4), (7) and (11), equation (10) takes the form

�1� " ���� � � ����� � " �2
���� � Pr f ��� ����� ÿ 2Pr f� �� � ���� � 0: �13�

where Pr =
�cp

k1
denotes the Prandtl number.

The corresponding boundary conditions are

��0� � 1; ��1� � 0: �14�
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PHF case
The power law heat flux on the wall surface is considered to vary quadratically
with distance and it is given by

ÿk
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at y � 0 T � T1 as y!1 ; �15�

where D is another constant and l is the characteristic length.
Defining
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we get �16�
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where k � k1�l� "g� ;
Substitution of (4), (7) and (17) in the energy equation (10) leads to a non-

linear ordinary differential equation of the form

�1� " g���� g����� � " g�
2��� � Pr f��� g���� ÿ 2Prf���� g ��� � 0 ; �18�

subjected to the boundary conditions

g��0� � ÿ1; g�1� � 0: �19�

In the next section we solve equations (13) and (18) subjected to boundary
conditions (14) and (19) respectively.

Perturbation solution
We employ perturbation technique to solve the non-linear equation (13) and
(18), and so we assume

� � �0 � "�1 � "2�2 � . . . . . . . . . �20�

g � g0 � "g1 � "2g2 � . . . . . . . . . �21�
Using equations (20) and (21) into the equations (13), (14) and (18), (19) and
equating terms with the like powers of ", we obtain the following four
boundary value problems with variable co-efficients for �0; �1; g0; g1 in the
sequel

�0����� � Prf����0���� ÿ 2Prf�����0��� � 0 ;

�0�0� � 1; �0��1� � 0;
�22�
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�1����� � Prf��� �1���� ÿ 2Prf�����1��� � ÿ�0������0��� ÿ �2
0����

�1�0� � 0; �1��1� � 0;
�23�

g0����� � Prf���g0���� ÿ 2Prf����g0 ��� � 0 ;

g0��0� � ÿ1; go� ��1� � 0 ;
�24�

g1����� � Prf���g1���� ÿ 2Prf����g1��� � ÿg0�����g0 ��� ÿ g2
0�

g1��0� � 0; g1���1� � 0:
�25�

Here, we have considered only zeroth and first order equations. The zeroth
order equations are in the form of confluent hypergeometric function defined
by Abramowitz and Stegun (1965)

M�a; b ; z� � 1�
X1
n�1

�a�nzn

�b�nn!
;

where M is the Kummer's function and

�a�n � a�a� 1��a� 2� . . . . . . . . . �a� nÿ 1�
�b�n � b�b� 1��b� 2� . . . . . . . . . �b� nÿ 1�:

Hence,
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Numerical solution
Since equations (23) and (25) are non-homogeneous ordinary differential
equations with variable coefficients and we follow most efficient numerical
shooting technique with fourth order Runge-kutta algorithm to solve them. In
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this method it is most important to choose the appropriate finite value of �1.
To select �1 we begin with some initial guess value and solve the problem with
some particular set of parameters to obtain �1��0�. The solution process is
repeated with another larger value of �1 until two successive values of �1��0�
differ only after desired significant digit. The last value of �1 is chosen as
appropriate value for a particular set of parameters. For different set of
parameters the appropriate values of �1 are different and they are obtained by
the above procedure only. It is noticed that small values of Pr makes �1 larger.
Blowing also gives large value for �1. Similarly we obtain the appropriate
value of �1 for equation (25).

In the shooting technique we apply initial value method for which two
more initial conditions are necessary. Since �1��0� and g1 (0) are not
prescribed, we start with an initial approximation to the two unknowns �1��0�
= � and g1 (0) = �. For approximate values of �1 we consider two sets of
initial approximations by choosing � � �0; �1 and � � �0; �1; as
�0 � 1:0,�1 � ÿ1:0; �0 � ÿ1:0 �1 � 1:0 (Chaim, 1998; Conte and de Boor,
1986). Then, we solve the problem using fourth order Runge-Kutta method for
a general second order equation

�1�� � f1 ��; �1; �1�� with �1 �0� � 0 �1��0� � �k

g1�� � f2 ��; g1; g1�� with g1 �0� � �k g1��0� � 0;

from � � 0 to � � �1 and we call these solutions z ��k; �1� at � � �1. Next
approximation �k�1; �k�1 are obtained from the linear interpolations

�k�1 � �kÿ1 ÿ �k ÿ �kÿ1� � z �kÿ1 ; �1� �
z �k; �1� � ÿ z �kÿ1; �1� � ;

where �k � �k; �k

z � �1; g1 k � 1; 2; 3 . . .

We repeat the process of solution and linear interpolation incorporating the
latest approximation until we get jz ��k; �1� ÿ 0 j < " for a prescribed ".

Results and discussion
Numerical computation of the result has been carried out for various values of
visco-elastic parameter (k1), porosity parameter (k2), in case of suction, blowing
and impermeability of the boundary wall. Values of perturbation parameter " is
chosen very small. Results are computed for small values of Prandtl number,
which is applicable to the case of polymer solution. Kinematic viscosity v is
taken as 0.04 and stretching rate b=2.0. Results are depicted in Figures 2-8.
Non-dimensional horizontal velocity profiles are shown in Figures 2(a) and (b)
for different values of porosity parameter. Effect of suction, blowing and
impermeability of the wall on shear stress has been shown graphically in
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Figures 3(a) and (b) for various values of porosity parameter. Results for
prescribed surface temperature (PST) are drawn in Figure 4-6 and results for
prescribed heat flux (PHF) are presented in Figures 7 and 8.

The effects of impermeability of the boundary wall, suction and blowing on
the horizontal velocity profiles in the boundary layer in absence of porous
medium are shown in Figure 2(a). It is observed that velocity decreases in the
boundary layer with the increase of distance from the boundary. The effect of
suction is to decrease the velocity and that of blowing is to increase the
velocity. These results are consistent with the physical situation. Figure 2(b) is
plotted for same set of parameters except for non-zero values of porosity
parameter (k2 = 1.0). Comparison of these two graphs reveals that the effect of
porosity is to decrease the velocity for all cases of suction, blowing and
impermeability of the wall. This is because of porous medium's obstruction to
the flow over the sheet. Figure 3(a) and (b) display shear stress contour on the
boundary against the visco-elastic parameter k1 for different values of porosity
parameter k2. It is noticed that the magnitude of shear stress is small on the
boundary for blowing in comparison to the case of suction. This is due to the
fact that injection of the fluid into the boundary layer amounts to the increase
of fluid velocity, resulting in reduction of frictional force. Comparison study of

Figure 2.
Velocity profile f

0 ��� in
absence of porous
medium when
(a) k1 - 0.04, k2 = 0 and
(b) k1 = 0.04, k2 = 1.0
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Figures 3(a) and (b) shows that porosity introduces additional shear stress on
the boundary. Limiting cases of our result when the wall sheet is impermeable
leads to the result of Abel and Veena (1998).

A graph is plotted in Figure 4 for wall temperature gradientÿ���0� versus "
for all cases of suction (vw = ±0.235), blowing (vw = 0.424) and impermeability
(vw = 0.0) of the wall when Prandtl number is Pr = 1.0. It is interesting to notice
that the effect of visco-elastic parameter is not significant in case of
impermeability of the wall, whereas the effect of visco-elasticity in the case of
suction is significant and it increases the wall temperature gradient ÿ���0� in
case of suction. However, the porosity has significant impact on the wall

Figure 3.
Graph of shear stress vs

visco-elastic parameter
k1 for various values of

suction, blowing and
impermeability of the

wall when (a) k2 = 0 and
(b) k2 = 1.0
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temperature gradient ÿ���0� in all cases. The effect of porosity is to increase
the wall temperature gradientÿ���0� in the case of suction and also in the case
when the stretching sheet is impermeable.

Figure 5 is the graph of wall temperature gradient ÿ���0� versus " for
various values of Prandtl number for visco-elastic parameter k1 = 0.04 and
porosity parameter k2 = 1.0. From the graphical representation we analyse that
the effect of increasing Prandtl number is to increase the wall temperature
gradient ÿ���0� in case of suction and also in the case when the stretching
sheet is impermeable. This is due to the fact that thermal boundary layer
thickness decreases with the increase of Prandtl number. For a fixed value of Pr

the value of wall temperature gradient ÿ���0� in case of suction is larger than
that in the case of blowing. This is due to the fact that the thermal boundary
layer thickness, in case of suction, is thinner than that in the case of blowing.
Also, this graph shows the combined effect of visco-elasticity and porosity on
the wall temperature gradient. Comparison of Figure 4 and Figure 5, reveals
that the combined effect of visco-elasticity and porosity is to decrease the wall
temperature gradient ÿ���0� in case of blowing and to increase in the case of
stretching of the wall subjected to suction.

Figure 6 shows temperature profiles ���� versus space variable � for various
values of visco-elastic parameter k1. It is of some interest to note that the
increase of visco-elastic parameter k1 leads to the decrease of temperature
profile in all cases of suction, blowing and impermeability of the wall.

Figure 4.
Dimensionless wall
temperature gradient,
ÿ�0 �0�, for different
values of k1 and k2 in
PST case when Pr = 1.0
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Figures 7(a) and (b) describe relationship of the non-dimensional temperature
g(0) with " in all cases of suction, blowing and impermeability of the wall when
the Prandtl number Pr = 1.0. Figure 7(a) demonstrates that the effect of
increasing porosity is to decrease the wall temperature in the case of suction
and impermeability of the wall, but it is to increase wall temperature in the case
of blowing. However, the effect of porosity has significant impact on the wall
temperature gradient g(0) in both the cases of blowing and impermeability of
the wall. Figure 7(b) shows that visco-elastic parameter k1 has similar effect as
that of porosity on temperature profile. It is also seen that the combined effect
of porosity (k2) and visco-elasticity (k1) is to magnify the impact on wall
temperature in PHF case.

Figure 8 gives the effect of Prandtl number on the dimensionless wall
temperature for all cases of suction, blowing and impermeability of the wall.

Figure 5.
Dimensionless wall

temperature gradient
ÿ�0 �0� for different

values of Pr in PST case
(k2 = 1.0; Pr = 1.0)
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We notice that increase of Prandtl number reduces the wall temperature in all
the cases of suction, blowing and impermeability of the wall.

Conclusions
The important findings of our study are as follows:

(1) The effect of suction is to decrease the velocity and that of blowing is to
increase the velocity in the flow field. The effect of porosity is to
decrease the velocity in the boundary layer in both the cases of blowing
and suction. In order to validate our numerical values, we have
compared horizontal velocity profiles in our case for an impermeable
stretching sheet (vw = 0) with those of Abel and Veena (1998). The
results are found to be in very good agreement.

(2) The effect of porosity is to increase the wall temperature gradient
ÿ���0�when there is suction and impermeability of the wall.

(3) The effect of increasing visco-elastic parameter is to decrease the
temperature profile.

Figure 6.
Dimensionless
temperature profile ��
vs � for different values
of k1 in PST case
(k2 = 1.0)



Momentum and
heat transfer

799

(4) Increase of Prandtl number results in decrease of wall temperature in the
case of suction, blowing and also in the case when the stretching sheet is
impermeable.

(5) The combined effect of visco-elasticity and porosity is to increase the
wall temperature in case of blowing and to decrease in case of suction
and when the stretching sheet is impermeable.

It should noted that some of the published results (Chen and Char, 1988; Chaim,
1996; Gupta and Sridhar, 1985; Abel and Veena, 1998) may be obtained as
special cases of the present work.

Figure 7.
Dimensionless wall

temperature, g (0), vs "
for different values of (a)

k2 and (b) k1 in PHF
case when Pr = 1.0
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